1	2	3	4	Total	Nota

Análisis Matemático II Primer Parcial (03/10/2018) Comisión 1

Apellido y nombre:

Carrera:

Justificar claramente TODAS las respuestas. Si se usa un teorema en la justificación, se debe enunciar.

- 1. (20 puntos) Sea f(x) = [x] la función parte entera de x en el intervalo [0,3]. Graficar con cuidado!
 - (a) Probar que para cada $n \in \mathbb{N}$ existe una partición P_n del intervalo [0,3] tal que $S(f,P_n)-s(f,P_n)\leq 3\frac{1}{n}$. Concluir que f es integrable.
 - (b) Enunciar el criterio de integrabilidad (de las "sucesiones" de particiones).
 - (c) Usando este criterio, mostrar que el valor de la integral $\int_0^3 [x] dx = 3$.
- 2. (20 puntos) Jaimito perdió la hoja de la tarea de matemática y tiene que reconstruir el enunciado. Recuerda apenas algunos datos: dada $F(x) = \int_0^x f(t) dt$, para x > 0 y f una función continua positiva, se sabe que

$$g(x)f(g(x)) = \frac{d}{dx}(F(g(x))), \quad \text{con} \quad g(0) = 1.$$

Se puede encontrar la expresión para la función g(x)? Cuál es?

3. (20 puntos) Enrique VIII, fascinado con las funciones trigonométricas, le quiere regalar a Ana Bolena un pendiente con la forma de la región comprendida entre el eje x y la función sen(x) entre 0 y 2π . El joyero necesita saber el area de la región para saber cuánto oro necesita. Según Enrique VIII el área está dada por

$$\int_0^{2\pi} |sen(x)| \, dx,$$

pero el joyero insiste en que esta equivocado.

- (a) Justificar que Enrique VIII tiene razón.
- (b) Calcular el área.
- 4. (a) (10 puntos) Enunciar y demostrar la fórmula de la integración por partes.
 - (b)(30 puntos) Calcular las siguientes primitivas

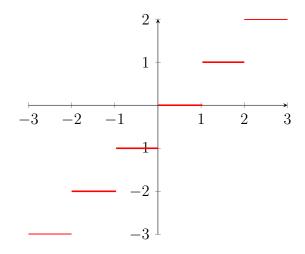
(i)
$$\int \tanh x \, dx$$
, (ii) $\int e^{ax} \cos(bx) \, dx$, (iii) $\int \frac{1}{\sqrt{\ln(x) - 1} + \sqrt{\ln(x) + 1}} \frac{1}{x} dx$.

Solución del primer parcial de Análisis 2 turno mañana

Franco Golfieri

Octubre 2018

Problema 1: Hagamos un gráfico de la función



a) Sea $n \in \mathbb{N}$ y f(x) = [x]. Tomemos la siguiente partición del intervalo $[0,3],\ t_i = \frac{i}{n},\ P_n = \{t_i\}_{i=0}^{3n}$ y definamos $M_i := \sup\{f(x) : x \in [t_{i-1},t_i]\}\ \forall i \in [1,3n]$ y $m_i := \inf\{f(x) : x \in [t_{i-1},t_i]\}\ \forall i \in [0,3]$. Y notar que $t_i - t_{i-1} = \frac{1}{n}$. Ver que $M_n = 1$ pues f(1) = 1 y ese es el máximo en el intervalo $[\frac{n-1}{n},1],\ M_{2n} = 2$ pues f(2) = 2 y es el máximo del intervalo $[2-\frac{1}{n},2]$ y $M_{3n} = 3$ pues f(3) es el máximo del intervalo $[3-\frac{1}{n},3]$

Luego:

$$S(f, P_n) = \sum_{i=0}^{3n} M_i (t_i - t_{i-1})$$

$$= \sum_{i=0}^{3n} M_i \frac{1}{n}$$

$$= \frac{1}{n} \left(\sum_{i=1}^{n} M_i + \sum_{i=n+1}^{2n} M_i + \sum_{i=2n+1}^{3n} M_i \right)$$

$$= \frac{1}{n} \left(\left(\sum_{i=1}^{n-1} 0 + \sum_{i=n-1}^{n} 0 \right) + \left(\sum_{i=n+1}^{2n-1} 1 + \sum_{i=2n-1}^{2n} 2 \right) + \left(\sum_{i=2n+1}^{3n-1} 2 + \sum_{i=3n-1}^{3n} 3 \right) \right)$$

$$= \frac{1}{n} \left((0(n-1)+1) + (1(n-1)+2) + (2(n-1)+3) \right)$$

$$= \frac{1}{n} \left(3n+3 \right)$$

$$= \frac{3}{n} + 3$$

Y también:

$$s(f, P_n) = \sum_{i=0}^{3n} m_i (t_i - t_{i-1})$$

$$= \sum_{i=0}^{3n} m_i \frac{1}{n}$$

$$= \frac{1}{n} \left(\sum_{i=1}^n m_i + \sum_{i=n+1}^{2n} m_i + \sum_{i=2n+1}^{3n} m_i \right)$$

$$= \frac{1}{n} \left(\left(\sum_{i=1}^n 0 \right) + \left(\sum_{i=n+1}^{2n} 1 \right) + \left(\sum_{i=2n+1}^{3n} 2 \right) \right)$$

$$= \frac{1}{n} \left((0n) + (1n) + (2n) \right)$$

$$= \frac{1}{n} (3n)$$

$$= 3$$

Por lo tanto $S(f, P_n) - s(f, P_n) = \left(\frac{3}{n} + 3\right) - 3 = \frac{3}{n}$ Ahora usemos el siguiente criterio de integrabilidad:

Segundo Criterio de integrabilidad: Sea $f:[a,b]\to\mathbb{R}$ acotada. Entonces f es integrable en [a,b] si y solo si $\forall \varepsilon>0$ existe P_{ε} partición de [a,b] tal que $S(f,P_{\varepsilon})-s(f,P_{\varepsilon})<\varepsilon$

Luego sea $\varepsilon > 0$. Sabemos que existe $n_0 \in \mathbb{N}$ tal que $\frac{3}{n_0} < \varepsilon$. Finalmente tenemos que:

 $S(f,P_{n_0})-s(f,P_{n_0})=\frac{3}{n_0}<\varepsilon$ y por el segundo criterio de integrabilidad fes integrable en el [0,3]

b) <u>Primer Criterio de integrabilidad</u>: Sea $f:[a,b]\to\mathbb{R}$ acotada. Supontamos que existe una familia $\{P_n\}_{n\in\mathbb{N}}$ de particiones de [a,b] tal que $\lim_{n\to\infty} s(f,P_n) = \lim_{n\to\infty} S(f,P_n) = l$. Entonces f es integrable en [a,b] y $\int_a^b f = l$

c) Ver que
$$\lim_{n\to\infty} s(f,P_n) = \lim_{n\to\infty} 3 = 3 = \lim_{n\to\infty} 3 + \frac{1}{n} = \lim_{n\to\infty} S(f,P_n)$$

Por lo tanto por el primer criterio de integrabilidad tenemos que:

$$\int_{0}^{3} [x] = 3$$

Problema 2:

Jaimito recuerda que f es continua y positiva para todo los reales positivos, luego por el Priemer Teorema Fundamental del Cálculo $F = \int_0^x f(t) dt$ es derivable para todo x > 0 y F'(x) = f(x). Ahora, usando regla de la cadena y la otra hipótesis que recuerda tenemos que:

$$g(x)f(g(x)) = (F(g(x))' = F'(g(x))g'(x) = f(g(x))g'(x).$$

Como $f(g(x)) \neq 0$ para todo x (pues f es positiva) cancelamos en ambos miembros de la igualdad dicha expresión y tenemos que g(x) = g'(x). Usando ejercicio 9 del práctico 3 sabemos que $g(x) = ke^x$ para algún $k \in \mathbb{R}$. Pero

además sabíamos por el enunciado que g(0)=1 . Luego $1=g(0)=ke^0=k$ y así conculuimos que

$$g(x) = e^x$$
.

Problema 3:

i) Sabemos que si una función $f \geq 0$ en un intervalo [a,b] el área comprendida entre f y el eje x en dicho intervalo es $\int_a^b f$. Y si $f \leq 0$ en un intervalo [a,b] el área comprendida entre f y el eje x en dicho intervalo es $-\int_a^b f$. Luego ver que $f(x) = \operatorname{sen}(x)$ es mayor igual a 0 en el intervalo $[0,\pi]$ y menor igual a 0 en el intervalo $[\pi,2\pi]$. Definamos $A_{f|[a,b]}$ como el área de la función f en el intervalo [a,b]. Luego es claro que si $c \in (a,b)$ tenemos que $A_{f|[a,b]} = A_{f|[a,c]} + A_{f|[c,b]}$. Por lo tanto como

$$A_{\text{sen}|[0,2\pi]} = A_{\text{sen}|[0,\pi]} + A_{\text{sen}|[\pi,2\pi]}$$
$$= \int_0^{\pi} \text{sen}(x) \ dx - \int_{\pi}^{2\pi} \text{sen}(x) \ dx$$

Y por otro lado como viendo a la función |sen(x)| en el intervalo $[0,2\pi]$ tenemos que

$$|\operatorname{sen}(x)| = \begin{cases} \operatorname{sen}(x) & \text{si } x \in [0, \pi] \\ -\operatorname{sen}(x) & \text{si } x \in [\pi, 2\pi] \end{cases}$$

tenemos que:

$$\int_{0}^{2\pi} |sen(x)| \ dx = \int_{0}^{\pi} sen(x) \ dx - \int_{\pi}^{2\pi} sen(x) \ dx$$

Por lo tanto coinciden y Enrique VIII tenía razón.

b) Como f(x) = sen(x) es una función continua en $[0, 2\pi]$ y $g(x) = -\cos(x)$ es una función derivable tal que $g'(x) = f(x) \, \forall x \in [0, 2\pi]$ podemos usar barrow y tenemos:

$$\int_{0}^{2\pi} |\sin(x)| dx = \int_{0}^{\pi} \sin(x) dx - \int_{\pi}^{2\pi} \sin(x) dx$$

$$= (-\cos(\pi) - (-\cos(0)) + (\cos(2\pi) - (\cos(\pi)))$$

$$= 2 + 2$$

$$= 4$$

Problema 4b:

i) Notar que

$$\int \tanh(x) dx = \int \frac{\sinh(x)}{\cosh(x)} dx$$

Aca ahora hacemos la sustitución $u = \cosh(x)$ y luego $du = \sinh(x) dx$. Por lo tanto

$$\int \tanh(x) dx = \int \frac{\sinh(x)}{\cosh(x)} dx = \int \frac{1}{u} du = \ln(|u|) + C = \ln(|\cosh(x)|) + C = \ln(\cosh(x)) + C$$

ii) Supongamos que $a \neq 0$. Comenzamos utilizando el método de integración por partes tomando $g'(x) = e^{ax} dx$ y $f(x) = \cos(bx) \Rightarrow g(x) = \frac{1}{a} e^{ax}$ y $f'(x) = -b \sin(bx) dx$. Por lo tanto:

$$\int e^{ax} \cos(bx) \ dx = \frac{1}{a} e^{ax} \cos(bx) - \int \left(\frac{1}{a} e^{ax}\right) \left(-b \sin(bx)\right) \ dx = \frac{b}{a} \int e^{ax} \sin(bx) \ dx$$

Ahora para resolver $\int e^{ax} \operatorname{sen}(bx) dx$ utilizamos el método de integración por partes de nuevo tomando $g'(x) = e^{ax} dx$ y $f(x) = \operatorname{sen}(bx) \Rightarrow g(x) = \frac{1}{a} e^{ax}$ y $f'(x) = b \cos(bx) dx$. Por lo tanto:

$$\int e^{ax} \operatorname{sen}(bx) \, dx = \left(\frac{1}{a} e^{ax}\right) \operatorname{sen}(bx) - \int \left(\frac{1}{a} e^{ax}\right) \left(b \cos(bx)\right) \, dx$$
$$= \frac{1}{a} e^{ax} \operatorname{sen}(bx) - \frac{b}{a} \int e^{ax} \cos(bx) \, dx$$

Por lo tanto:

$$\int e^{ax} \cos(bx) dx = \frac{1}{a} e^{ax} \cos(bx) + \frac{b}{a} \int e^{ax} \sin(bx) dx$$

$$= \frac{1}{a} e^{ax} \cos(bx) + \frac{b}{a} \left(\frac{1}{a} e^{ax} \sin(bx) - \frac{b}{a} \int e^{ax} \cos(bx) dx \right)$$

$$= \frac{1}{a} e^{ax} \cos(bx) + \frac{b}{a^2} e^{ax} \sin(bx) - \frac{b^2}{a^2} \int e^{ax} \cos(bx) dx$$

Luego:

$$\left(1 + \frac{b^2}{a^2}\right) \int e^{ax} \cos(bx) \ dx = \frac{1}{a} e^{ax} \cos(bx) + \frac{b}{a^2} e^{ax} \sin(bx)$$

Como $a \neq 0$ luego $a^2 + b^2 \neq 0$ y por lo tanto $\left(1 + \frac{b^2}{a^2}\right) = \left(\frac{a^2 + b^2}{a^2}\right)$ está bien definida.

Luego:

$$\int e^{ax} \cos(bx) \ dx = \frac{1}{\left(\frac{a^2 + b^2}{a^2}\right)} \left(\frac{1}{a} e^{ax} \cos(bx) + \frac{b}{a^2} e^{ax} sen(bx) \right) = \frac{e^{ax}}{a^2 + b^2} \left(a \cos(bx) + b \sin(bx) \right)$$

Ahora si a=0 y $b\neq 0$ tenemos que $\int e^{ax}\cos(bx)=\int\cos(bx)=\frac{1}{b}\sin(bx)$ que coincide con la expresión hallada anteriormente para a=0 y $b\neq 0$.

Ahora si a=0 y b=0 tenemos que $\int e^{ax} \cos(bx) dx = \int e^{0x} \cos(0x) dx = \int 1 dx = x + C$.

Finalmente tenemos:

$$\int e^{ax} \cos(bx) dx = \begin{cases} \frac{e^{ax}}{a^2 + b^2} (a \cos(bx) + b \sin(bx)) + C & \text{si } a \neq 0 \lor b \neq 0 \\ x + C & \text{si } a = b = 0 \end{cases}$$

iii) Hagamos sustitución tomando u=ln(x) y por lo tanto $du=\frac{1}{x}dx.$ Luego:

$$\int \frac{1}{\sqrt{\ln(x) - 1} + \sqrt{\ln(x) + 1}} \frac{1}{x} dx = \frac{1}{\sqrt{u - 1} + \sqrt{u + 1}} du$$

$$= \int \frac{\sqrt{u - 1} - \sqrt{u + 1}}{(u - 1) - (u + 1)} du$$

$$= -\frac{1}{2} \int \sqrt{u - 1} - \sqrt{u + 1} du$$

$$= -\frac{1}{2} \left(\int (u - 1)^{\frac{1}{2}} du - \int (u + 1)^{\frac{1}{2}} du \right)$$

$$= -\frac{1}{2} \left(\frac{2}{3} (u - 1)^{\frac{3}{2}} - \frac{2}{3} (u + 1)^{\frac{3}{2}} \right) + C$$

$$= -\frac{1}{3} \left((u - 1)^{\frac{3}{2}} - (u + 1)^{\frac{3}{2}} \right) + C$$

$$= -\frac{1}{3} \left((\ln(x) - 1)^{\frac{3}{2}} - (\ln(x) + 1)^{\frac{3}{2}} \right) + C$$